A hierarchical Bayesian model to estimate the unobservable predation rate on sawfly cocoons by small mammals
نویسندگان
چکیده
Predation by small mammals has been reported as an important mortality factor for the cocoons of sawfly species. However, it is difficult to provide an accurate estimate of newly spun cocoons and subsequent predation rates by small mammals for several reasons. First, all larvae do not spin cocoons at the same time. Second, cocoons are exposed to small mammal predation immediately after being spun. Third, the cocoons of the current generation are indistinguishable from those of the previous generation. We developed a hierarchical Bayesian model to estimate these values from annual one-time soil sampling datasets. To apply this model to an actual data set, field surveys were conducted in eight stands of larch plantations in central Hokkaido (Japan) from 2009 to 2012. Ten 0.04-m(2) soil samples were annually collected from each site in mid-October. The abundance of unopened cocoons (I), cocoons emptied by small-mammal predation (M), and empty cocoons caused by something other than small-mammal predation (H) were determined. The abundance of newly spun cocoons, the predation rate by small mammals before and after cocoon sampling, and the annual rate of empty cocoons that remained were estimated. A posterior predictive check yielded Bayesian P-values of 0.54, 0.48, and 0.07 for I, M, and H, respectively. Estimated predation rates showed a significant positive correlation with the number of trap captures of small mammals. Estimates of the number of newly spun cocoons had a significant positive correlation with defoliation intensity. These results indicate that our model showed an acceptable fit, with reasonable estimates. Our model is expected to be widely applicable to all hymenopteran and lepidopteran insects that spin cocoons in soil.
منابع مشابه
Habitat heterogeneity affects predation of European pine sawfly cocoons
Habitat heterogeneity is thought to affect top-down control of herbivorous insects and contribute to population stability by providing a more attractive microhabitat for natural enemies, potentially leading to reduced population fluctuations. Identifying the parameters that contribute to habitat heterogeneity promoting top-down control of herbivorous insects by natural enemies could facilitate ...
متن کاملComparison of Bayesian and Frequentist Methods in Estimating the Net Reclassification and Integrated Discrimination Improvement Indices for Evaluation of Prediction Models: Tehran Lipid and Glucose Study
Introduction: The Frequency-based method is commonly used to estimate the Net Reclassification Improvement (NRI)- and Integrated Discrimination Improvement (IDI) indices. These indices measure the magnitude of the performance of statistical models when a new biomarker is added. This method has poor performance in some cases, especially in small samples. In this study, the performance of two Bay...
متن کاملThe Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملOil Price Shocks and Economic Fluctuations in Iran as a Small Open Oil Exporting Economy
Oil price shocks are the major source of economic instability in oil exporting developing countries, including Iran. In this paper a Multi Sector Dynamic Stochastic General Equilibrium model, with emphasis on optimization of oil sector as a producing sector is designed. Furthermore, an optimizing import sector is introduced into the model by considering the price rigidity in imported goods as a...
متن کاملIntelligent identification of vehicle’s dynamics based on local model network
This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...
متن کامل